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Abstract: In this paper, we investigated the combined effects of Hall and thermal on MHD Stokes’ second problem for unsteady second grade 
fluid flow. The expressions for the velocity field and the temperature field are obtained analytically. The effects of various pertinent 

parameters on the velocity field and temperature field are studied in detail with the aid of graphs. 
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1 INTRODUCTION 
With the growing importance of non-Newtonian fluids in 

modern technology and industries, investigations of such 

fluids are desirable. A number of industrially important 

fluids including molten plastics, polymers, pulps, foods 

and fossil fuels, which may saturate in underground beds 

are exhibits non-Newtonian behavior. Due to complexity of 

fluids, several non-Newtonian fluid models have been 

proposed. In the category of such fluids, second grade fluid 

is the simplest subclass for which one can hope to gain an 

analytic solution. Exact analytic solutions for the flows of 

non-Newtonian fluids are most welcome provided they 

correspond to physically realistic situations, as they serve a 

dual purpose. First, they provide a solution to flow that has 

technical relevance. Second, such solutions can be used as 

checks against complicated numerical codes that have been 

developed for much more complex flows. Various studies 

on the flows of non-Newtonian fluids have been made 

under different physical aspects. However some recent 

contributions in the field may be mentioned in Refs. 

(Fetecau and Fetecau, 2003; Hayat et al., 2004; Chen et al., 

2004; Fetecau and Fetecau, 2005; Tan and Masuoka, 2005). 

The motion of a viscous fluid caused by the 

sinusoidal oscillation of a flat plate is termed as Stokes’ 

second problem by Schliching (2000). Initially, both the 

plate and fluid are assumed to be at rest. At time t = 0+, the 

plate suddenly starts oscillating with the velocity 0
i tU e ω . 

The study of the flow of a viscous fluid over an oscillating 

plate is not only of fundamental theoretical interest but it 

also occurs in many applied problems such as acoustic 

streaming around an oscillating body, an unsteady 

boundary layer with  fluctuations (Tokuda,1968). Penton 

(1968) have presented a closed-form to the transient 

component of the solution for the flow of a viscous fluid 

due to an oscillating plate. Puri and Kythe (1998) have 

discussed an unsteady flow problem which deals with non-

classical heat conduction effects and the structure of waves 

in Stokes’ second problem. Much work has been published 

on the flow of fluid over an oscillating plate for different 

constitutive models ( Erdogan, 1995; Zeng and Weinbaum, 
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1995; Puri and Kythe, 1998; Asghar et al., 2002; Ibrahem et 

al., 2006). 

Past few decades, the study of 

magnetohydrodynamics flow of electrically conducting 

fluids in electric and magnetic fields are of considerable 

interest in modern metallurgical and metal working 

process. The Hartmann flow is a classical problem that has 

important applications in MHD power generators and 

pumps, accelerators, aerodynamic heating, electrostatic 

precipitation, polymer technology, the petroleum industry, 

purification of crude oil and design of various heat 

exchangers. For example, Sparrow and Cess (1961) have 

studied the effect of a magnetic field on the free convection 

heat transfer from surface. Garandet et al. (1992) have 

discussed buoyancy driven convection in rectangular 

enclosure with a transverse magnetic field. Chamkha (1999) 

have analyzed free convection effects on three-dimensional 

flow over a vertical stretching surface in the presence of a 

magnetic field. Erdogan (2000) analyzed the unsteady flow 

of viscous fluid due to an oscillating plane wall by using 

Laplace transform technique. Vajravelu and Rivera (2003) 

discussed the hydromagnetic flow at an oscillating plate. 

Singh (2003) have studied MHD free convection and mass 

transfer flow with Hall current, viscous dissipation, joule 

heating and thermal diffusion. Reddappa et al. (2009) have 

investigated the non-classical heat conduction effects in 

Stokes’ second problem of a micropolar fluid under the 

influence of a magnetic field. The pulsatile flow of couple 

stress fluid through a porous medium with periodic body 

acceleration and magnetic field was investigated by Rathod 

and Tanveer (2009).  

In view of these, we studied the effects of Hall and 

thermal in Stokes’ second problem for unsteady second 

grade fluid flow. The expressions for the velocity field and 

the temperature field are obtained analytically. The effects 

of various pertinent parameters on the velocity field and 

temperature field are studied in detail with the aid of 

graphs.  

 

2 MATHEMATICAL FORMULATION 
 

We consider the one-dimensional unsteady flow of 

a laminar, incompressible second grade fluid past a vertical 

flat plate in the yz - plane and occupy the space 0x > , 

with x -axis in the vertical direction. A uniform magnetic 

field 0B  is applied transverse direction to the flow. It is 

assumed that the transversely applied magnetic field and 

magnetic Reynolds number are very small and hence the 

induced magnetic field is negligible. The plate initially at 

rest and at constant temperature θ∞  which is the free 

stream temperature is moved with a velocity 0
i tU e ω  in its 

own plane along the z-axis, and its temperature is subjected 

to a periodic heating of the form ( wθ - θ∞ ) i te ω , where 

wθ θ∞≠  is some constant. 

Viscoelastic fluids can be modeled by Rivlin – 

Ericksen constitutive equation   

2
1 1 2 2 1S p µ α α= − Ι + Α + Α + Α  (2.1) 

where S  is the Cauchy stress tensor, p  is the scalar 

pressure, 1,µ α  and 2α  are the material constants, 

customarily known as the coefficients of viscosity, elasticity 

and cross - viscosity, respectively. These material constants 

can be determined from viscometric flows for any real 

fluid. 1Α  and 2Α  are Rivlin-Ericksen tensors  and they 

denote, respectively, the rate of strain and acceleration. 1Α  

and 2Α  are defined by  

( )1 V V TΑ = ∇ + ∇    (2.2) 

and  ( ) ( )1
2 1 1V V Td

dt
Α

Α = + Α ∇ + ∇ Α  (2.3) 

where /d dt  is the material time derivative, V  is the 

velocity field and ∇  gradient operator and ( )T
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transpose operator. The viscoelastic fluids when modeled 

by Rivlin-Ericksen constitutive equation are termed as 

second-grade fluids. A detailed account of the 

characteristics of second - grade   fluids is well documented 

by Dunn and Rajagopal (1995). Rajagopal and Gupta (1984) 

have studied the thermodynamics in the form of dissipative 

inequality (Clausius –Duhem) and commonly accepted the 

idea that the specific Helmholtz free energy should be a 

minimum in equilibrium. From the thermodynamics 

consideration they assumed 

0µ ≥ ,  1 0,α >  1 2 0α α+ =  (2.4) 

We seek the velocity field of the form  

( )( ), ,0,0V u x t=                (2.5) 

For this type of flow, equation of continuity is identically 

satisfied and the balance of linear momentum reduces to 

the following differential equation (Fetecau and  Zierep, 

2001).  

( )
22 3
0

1 02 2 21
Bu u u u g

t x x t m
σρ µ α ρ β θ θ∂ ∂ ∂

= + − + −
∂ ∂ ∂ ∂ +

  (2.6) 

where ρ  is the density of the fluid, m  is the Hall 

parameter, g  is the acceleration due to gravity, β  is the 

coeeficient of the thermal expansion and σ  is the electrical 

conductivity. 

The energy equation (MCF model) is given by 

(Ibrahem et al., 2006)       

tt t xx
pc

χτθ θ θ
ρ

+ =    (2.7) 

Introducing the following non dimensional 

variables 

2
0 0 0

0 0

,   ,   ,   
w

u uux x u t t
u

θ θθ
ν ν θ θ

−
= = = =

−
 

  

into the Eqs. (2.6) and (2.7), we get  

2 3 2

2 2 21
u u u MG u
t x x t m

α θ∂ ∂ ∂
= + + −

∂ ∂ ∂ ∂ +
  (2.8) 

2 2

2 2p p
t t x
θ θ θλ ∂ ∂ ∂
+ =

∂ ∂ ∂
   (2.9) 

where    ( )2 2
021 0 0

2 3
0 0

,  , ,wgu BM G
u u

ν β θ θα σα ν
µν ρ

−
= = =

2
0,   .pc up

νρ τλ
ψ ν

= =  

The corresponding dimensions are boundary 

conditions are 

( )0, ,i tu t e ω=   ( )0, i tt e ωθ =  
 

( ), 0,u t∞ =    ( ), 0tθ ∞ =  (2.10) 

 

3 SOLUTION 

 
To solve the non-linear system (2.8) and (2.9) using 

the boundary conditions (2.10), we assume that  

( ) ( ), i tu x t U x e ω=  , ( ) ( ), i tx t x e ωθ = Θ   (3.1) 

Substituting Eq. (3.1) into Eqs. (2.8) and (2.9) and 

the boundary conditions (2.10), we get       
2

2
2

d U N U Gn
dx

− = − Θ     (3.2) 

( )
2

2
2 0d p i p

dx
λ ω ωΘ

+ − Θ =    (3.3) 

here 

( )2 2 2 2
1 12 2

12 2 2 2 2

1 1, =  and .
1 1 1

M i M M iN M n
m

ω α ω α ωα
ω α ω α

+ + − −
= =

+ + +
 

The boundary conditions are  

( ) ( )0 1, 0 1U = Θ =           

( ) ( )0, 0U ∞ = Θ ∞ =               (3.4)              

Solving the equations (3.2) - (3.3) using the boundary 

conditions Eq. (3.4), we obtain 

2 2
Nx Nx kxGnU e e e

k N
− − − = + − −

  (3.5)  

kxe−Θ =      (3.6) 
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where       

2 2 2 2
2 1 1 

2 2
k p i p p i pω λ λω ω λ λωλ ω ω ω ω

   + − + +
= − + = +      

   
. 

The final expressions of the velocity field and 

temperature field are given by 

2 2
Nx Nx kx i tGnu e e e e

k N
ω− − −  = + −  − 

  

    (3.6)  

kx i te ω− +Θ =       

    (3.7) 

 

 

4 DISCUSSION OF THE RESULTS  
Figs. 1 - 16 show the effects of various values of the 

pertinent parametersα , G , M ,  m , p  and λ  on the 

velocity ( Reu and u ) and temperature( Reθ and θ )  

profiles.  

Fig.  1 shows the effects of material parameter α  

on Re  u  for 1M = , 1p = , 10ω = , 0.2m = , 

0.1t = , 0.005λ = and 5G = . It is found that, the 

Re  u decreases with increasingα . The same trend is 

observed from Fig. 2 for u . 

 Fig. 3 depicts the effects of G  on Re  u  for 

1M = , 0.2m = , 1p = ,  0.1t = ,  

0.005λ = and 0.01α = . It is observed that, the Re  u  

initially increases and then decreases with increasing G .  

Effects of G  on u  for 1M = , 0.2m = , 1p =

, 10ω = , 0.1t = , 0.005λ = and 0.01α =  is 

depicted in Fig. 4. It is noted that, the u  increases with an 

increase in G .  

Fig. 5 shows the effects of Hartmann number M  

on Reu  for 5G = , 0.2m = ,   1p = , 10ω = , 

0.1t = , 0.005λ = and 0.01α = .  It is found that, the 

Reu  first decreases and then increases with increasing M
. 

Fig. 6 depicts the effects of M  on u  for 5G = ,

1p = , 0.2m = , 10ω = , 0.1t = , 0.005λ = and 

0.01α = . It is observed that, the u  decreases with an 

increase in M .   

The effects of Hall parameter m  on Reu  for 

5G = , 1M = , 1p = , 10ω = , 0.1t = , 0.005λ =

and 0.01α =  is shown in Fig. 7. It is found that, the Reu  

first increases and then decreases with increasing m . 

Fig. 8 illustrates the effects of m  on u  for 5G =

, 1p = , 1M = , 10ω = , 0.1t = ,   0.005λ = and 

0.01α = . It is observed that, the u  increases with an 

increase in m .    

Effect of p  on Reu  for 5G = , 1M = , 

0.2m = , 10ω = , 0.1t = , 0.005λ =  and 0.01α =  

is shown in Fig. 9. It is found that, the Reu  first decreases 

and then increasing with increasing p . 

Effect of p  on u  for 5G = , 1M = , 0.2m = , 

10ω = , 0.1t = , 0.005λ = and 0.01α =  is depicted 

in Fig. 10. It is noted that, the u  decreases on increasing p

.  

Fig. 11 shows the effects of λ on Reu  for 5G =

, 0.2m = , 1p = , 10ω = , 0.1t = , 1M = and 

0.01α = . It is observed that, the Reu  first decreases 

and then increases with increasingλ .   

The effects of λ on u  for 5G = , 1p = , 

0.2m = , 10ω = , 0.1t = , 1M = and 0.01α = is 

10,ω =
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shown in Fig. 12. It is observed that, the Reu  decreases 

with increasingλ .  

Fig. 13 shows the effects of λ  on Reθ  for 

5G = , 1p = , 0.2m = , 10ω = , 0.1t = , 1M = and 

0.01α = . It is observed that, the Reθ  first increases and 

then decreases with increasingλ .   

Fig. 14 depicts the effects of λ  on θ  for 5G = , 

1p = , 10ω = , 0.2m = , 0.1t = , 1M =  and 

0.01α = . It is noted that, the θ  increases with an 

increase inλ .  

Effects of p  on Reθ  for 5G = , 0.005λ = , 

10ω = , 0.2m = ,  0.1t = , 1M = and 0.01α =  is 

depicted in Fig. 15. It is found that, the Reθ  first 

decreases and then increases with an increase in p .  

Fig. 16 shows the effects of p  on θ  for  5G = , 

0.2m = ,  0.005λ = , 10ω = , 0.1t = , 1M = and 

0.01α = . It is observed that, the θ  decreases with 

increasing p .  

 

 

 

 

 

 

Fig. 1. Effects of   α  on Re  u  for 1M = , 1p = , 

10ω = , 0.1t = , 0.005,λ = 0.2m = and 5G =  

 

 
 
Fig. 2. Effects of α  on u  for 1M = , 1p = , 

10ω = , 0.1t = , 0.005λ = , 0.2m =  and  5G =
.   

 

 
Fig. 3. Effects of G  on Re  u  for 1M = , 1p = , 

10ω = , 0.1t = , 0.005,λ = 0.2m =  and 

0.01α = .  
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Fig. 4. Effects of G  on u  for 1M = , 1p = , 10ω = , 

0.1t = , 0.005,λ = 0.2m = and 0.01α =

.  
 
 

 

 
Fig. 5. Effects of M  on Reu  for 5G = , 1p = , 

10ω = , 0.1t = , 0.005,λ = 0.2m =  and 

0.01α = .  
 

 

 

Fig. 6. Effects of M  on u  for 5G = , 1p = , 

10ω = , 0.1t = , 0.005,λ =  0.2m =  and 

0.01α = .  
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Fig. 7. Effects of m  on Reu  for 5G = , 1p = , 

10ω = , 0.1t = , 0.005,λ =   1M = and 

0.01α = .  
 

 

Fig. 8. Effects of m  on u  for 5G = , 1p = , 

10ω = , 0.1t = , 0.005,λ =   1M = and 

0.01α =  
 
 

 
 
 

Fig. 9. Effects of p  on Reu  for 5G = , 1M = , 

10ω = , 0.1t = , 0.005,λ =  0.2m =  and 

0.01α = .  
 
 

 
 

 
Fig. 10. Effects of p  on u  for 5G = , 1M = , 

10ω = , 0.1t = , 0.005,λ =  0.2m =  and 

0.01α = .  
 
 

 
 

 
Fig. 11. Effects of λ  on Reu  for 5G = , 1M =
, 10ω = , 0.1t = , 1,p =  0.2m = and 

0.01α = .  
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Fig. 12. Effects of λ  on u  for 5G = , 1M = , 

10ω = , 0.1t = , 1,p = 0.2m = and 

0.01α = .  

 
 

Fig. 13. Effects of λ  on Reθ  for 5G = , 1p = , 

10ω = , 0.1t = , 0.2,m = 1M = and 

0.01α = .  

 
 
 

 
Fig. 14. Effects of λ  on θ  for 5G = , 1p = , 

10ω = , 0.1t = ,  0.2,m =  1M = and 
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Fig. 16. Effects of p  on θ  for 5G = , 

0.005λ = , 10ω = , 0.1t = , 0.2,m =  

1M = and 0.01α = .  
 
 

 
 
5 CONCLUSIONS 
 In this paper, the thermal effect in Stokes second 

problem for unsteady second grade fluid flow under the 

influence of magnetic field is investigated. The expressions 

for the velocity field and the temperature field are obtained 

analytically. It is found that, the Re  u  and u decreases 

with increasing , ,M pα and λ , while they increases with 

increasing m  and G . The Reθ  and θ  increases with 

increasing λ , while they decreases with increasing p .  
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